SOUT CHINES CENTE SCIENCE

SCHROE

WHIOWN WARNE FSHERES SERVICE

JULY 1992

LA 1011A. CA 92038

SUMMARY OF THE **1991 NORTH PACIFIC ALBACORE FISHERIES DATA**

P.O. BOX 211

SOUTHWEST FISHERES SCHUE EINTH

By

Gary M. Rensink and Forrest R. Miller

ADMINISTRATIVE REPORT LJ-92-30

This Administrative Report is issued as an informal document to ensure prompt dissemination of preliminary results, interim reports and special studies. We recommend that it not be abstracted or cited.

SUMMARY OF THE 1991 NORTH PACIFIC ALBACORE FISHERIES DATA

SH 1 2 5662 10.92-30 c.2

Gary M. Rensink Southwest Fisheries Science Center National Marine Fisheries Service, NOAA La Jolla, California 92038

and

Forrest R. Miller Inter-American Tropical Tuna Commission La Jolla, California 92038

JULY 1992

LI	BRA	\RY	
NOV	22	2005	
Atmospher	ic Ac	ceanic & Iministratio Commerce	n

ADMINISTRATIVE REPORT LJ-92-30

CONTENTS

.

0

Pa	ge
INTRODUCTION	1
COVERAGE RATES	1
TOTAL CATCH AND EFFORT	2
CATCH PER EFFORT	2
LENGTH FREQUENCY	3
SEA SURFACE TEMPERATURE	3
NMFS OBSERVED TRIPS	
SUMMARY	4
ACKNOWLEDGEMENTS	4

LIST OF TABLES

Table	I	Page
1.	Sampling results of the U.S. North Pacific albacore landings by gear for 1990 and 1991	. 6
2.	Sampling coverage for the U.S. north Pacific albacore fishery by state for 1990 and 1991	. 7
3.	Catches of north Pacific albacore in metric tons by fisheries, 1952-1991	. 8

LIST OF FIGURES

Figure		Pa	age
	U.S. albacore catch (numbers of fish) by 1° quadrangle in the north Pacific, May 1991		9
1b.	U.S. albacore catch (numbers of fish) by 1° quadrangle in the north Pacific, June 1991		10

LIST OF FIGURES

Figure	P	age
1 c .	U.S. albacore catch (numbers of fish) by 1° quadrangle in the north Pacific, July 1991	11
1d.	U.S. albacore catch (numbers of fish) by 1° quadrangle in the north Pacific, August 1991	12
1e.	U.S. albacore catch (numbers of fish) by 1° quadrangle in the north Pacific, September 1991	13
1f.	U.S. albacore catch (numbers of fish) by 1° quadrangle in the north Pacific, October 1991	14
1g.	U.S. albacore catch (numbers of fish) by 1° quadrangle in the north Pacific, 1991 season	15
2.	Japanese north Pacific albacore catch (metric tons) by selected fishery, 1952 - 1991	16
3.	U.S. north Pacific albacore jigboat stratified Catch Per Effort (fish/day) by year, 1961-1991	17
4a.	U.S. albacore jigboat Catch Per Effort (fish/day) by 1° quadrangle in the north Pacific, May 1991	18
4b.	U.S. albacore jigboat Catch Per Effort (fish/day) by 1° quadrangle in the north Pacific, June 1991	19
4c.	U.S. albacore jigboat Catch Per Effort (fish/day) by 1° quadrangle in the north Pacific, July 1991	20
4d.	U.S. albacore jigboat Catch Per Effort (fish/day) by 1° quadrangle in the north Pacific, August 1991	21
4e.	U.S. albacore jigboat Catch Per Effort (fish/day) by 1° quadrangle in the north Pacific, September 1991	22
4f.	U.S. albacore jigboat Catch Per Effort (fish/day) by 1° quadrangle in the north Pacific, October 1991	23
4g.	U.S. albacore jigboat Catch Per Effort (fish/day) by 1° quadrangle in the north Pacific, 1991 season	24

LIST OF FIGURES

(

C

Figure		Page
5.	Average weight (lbs.) of north Pacific albacore caught by U.S. vessels by year, 1961-1991	25
6.	Length-frequency histogram of fish caught by the U.S. north Pacific albacore fleet, 1991 Season	26
7.	Length-frequency histograms of fish caught by the U.S. north Pacific albacore fleet in 1991 by gear	27
8a.	Length-frequency histograms of albacore caught by U.S. vessels fishing jig in the north Pacific, 1991 season	28
8b.	Length-frequency histograms of albacore caught by U.S. vessels fishing bait and jig in the north Pacific, 1991 season	29
8c.	Length-frequency histograms of albacore caught by U.S. vessels fishing gillnet in the north Pacific, 1991 season	30
9a.	Average sea-surface temperature (SST) isopleths (°C) and U.S. albacore catch area for the north Pacific, May 1991	31
9b.	Average sea-surface temperature (SST) isopleths (°C) and U.S. albacore catch area for the north Pacific, June 1991	32
9c.	Average sea-surface temperature (SST) isopleths (°C) and U.S. albacore catch area for the north Pacific, July 1991	33
9d.	Average sea-surface temperature (SST) isopleths (°C) and U.S. albacore catch area for the north Pacific, August 1991	. 34
9e.	Average sea-surface temperature (SST) isopleths (°C) and U.S. albacore catch area for the north Pacific, September 1991	35
9f.	Average sea-surface temperature (SST) isopleths (°C) and U.S. albacore catch area for the north Pacific, October 1991	36

SUMMARY OF THE 1991 NORTH PACIFIC ALBACORE FISHERIES DATA

Gary M. Rensink Southwest Fisheries Science Center National Marine Fisheries Service, NOAA La Jolla, California 92038

and

Forrest R. Miller Inter-American Tropical Tuna Commission La Jolla, California 92038

INTRODUCTION

During the 1991 north Pacific fishing season (May-October), over 350 logbooks were distributed by the Western Fishboat Owners Association (WFOA) and port samplers throughout California, Oregon, and Washington to U.S. albacore fishermen for voluntary record keeping. Logbooks were collected, or information from vessel logbooks were abstracted, from almost 200 fishing trips, by representatives from the California Department of Fish and Game (CDFG), Washington Department of Fisheries (WDF), and the Oregon Department of Fish and Wildlife (ODFW). Landings were also sampled for sizes of fish. National Marine Fisheries Service (NMFS) observers on board albacore vessels also filled out logbooks and measured fish landed.

This report is a summary of data for the 1991 fishing season. Available data from foreign fisheries are also presented for comparison.

COVERAGE RATES

Samplers collected catch and fishing effort statistics from vessels who completed U.S. Pacific albacore logbooks or abstracted fishing information from vessel logbooks, and measured lengths of individual fish (fork length) from landed catches. Coverage rates for catch and effort and length-frequency statistics were calculated as the ratio of sampled landings in weight to total landings.

Catch-and-effort and length-frequency statistics from the U.S. north Pacific albacore fishery were collected at landing ports throughout California, Oregon and Washington. NMFS observers on board four U.S. troll vessels (jigboats) also completed U.S. Pacific albacore logbooks, and recorded length-frequency, gillnet damage, and various other data¹. The majority of the landings were from jigboats, with lesser quantities from baitboats, gillnet boats, and vessels using a combination of bait and jig fishing gears (Table 1). The overall sampling coverage for catch-and-effort information was 62% in 1991 (Table 2), an increase from 57% in 1990^2 . Length-frequency sampling coverage was 61% in 1991, an increase from 56% in 1990. Sampling coverage increased for most individual ports as well.

TOTAL CATCH AND EFFORT

The 1991 U.S. north Pacific albacore fishery started in mid-May and continued through mid-October. The 200+ vessels participating in the fishery expended an estimated 3,866 days fishing (sampled days fishing/coverage rate) compared to 5,523 days fishing in 1990. In 1991, catches were highest in August, roughly 900 to 1,300 miles west of southern Oregon, and about 50-150 miles south of Cape St. James (Queen Charlotte Islands) (Figures 1a-g). Catches from the commercial fishery were a new record low of 1,845 mt for 1991, compared to 2,818 mt in 1990 (Table 3), a decrease of 35%. Sport catches in 1991 were estimated at 6 mt, caught in areas off the California coast from San Diego to San Francisco Bay. In May 1991, U.S. troll vessels fished for the first time in areas near Japan, where fishing success was spotty. Incidental amounts of other species recorded in the catch for the north Pacific albacore troll fishery included skipjack tuna (*Katsuwonis pelamis*), yellowfin tuna (*Thunnus albacares*), short-billed spearfish (*Tetrapturus angustirostris*), striped marlin (*Tetrapturus audax*), rainbow runner (*Elagatis bipinnulata*), and mahi mahi (*Coryphaena hippurus*).

Data from most of the foreign north Pacific albacore fisheries are available only through 1990 (Table 3). Japanese longline and gillnet catches of albacore have remained stable since 1986 (Figure 2). Japanese baitboat catches of albacore increased for the second straight year after a dramatic drop in 1988, and were 12,500 mt in 1990.

CATCH PER EFFORT

Estimates of catch per effort (number of fish landed per day fished) for U.S. jigboats in the north Pacific are independent of vessel size and are the ratio of catch to effort in each 1° square and month. Annual estimates are an average of all months and 1° squares where fishing occurred. The overall catch rate in 1991 (36 fish/day) was the same as that in 1990 (Figure 3). The highest nominal catch rates in 1991 occurred roughly 1,300 miles west of central Oregon in July (155 to 220 fish/day), and 1,250 miles west of central Oregon in August (205 to 260 fish/day) (Figures 4a-g). This area was farther offshore than where some of the highest catch rates (190-225 fish/day) were recorded in 1990.

¹ Bartoo, N., D. Holts, and L. Halko. 1992. Report on the 1991 Cooperative north Pacific albacore observer project. SWFSC Admin. Rep., La Jolla, LJ-92-07. 14p.

² Rensink, Gary M. and Forrest R. Miller. 1991. Summary of the 1990 north Pacific albacore fisheries data. SWFSC Admin. Rpt., La Jolla, LJ-91-21. 33p.

LENGTH FREQUENCY

Over 24,000 albacore were measured for fork length (tip of snout to fork of the tail) from the landings of vessels participating in the 1991 U.S. north Pacific fishery (Table 1). Length-frequency data were summarized by gear and 5-degree latitudinal bands for inshore (east of 140°W) and offshore (west of 140°W) areas. The average fork length of fish measured decreased considerably from 16.4 lbs. (71.0 cm) in 1990 to 12.6 lbs. (65.1 cm) in 1991 (Figure 5). Fish ranged in size from 41 to 117 cm (Figure 6 and 7).

U.S. troll landings in 1990 consisted primarily of albacore with modes centered around 62 and 76 cm (Figures 7 and 8a; probably 3- and 4-year- old fish), as opposed to modes centered around 65 and 80 cm in 1990 though the data may be biased due to the small sample size. Landings from vessels using a combination of bait and jig gears also consisted primarily of 3- and 4-year-old fish (Figures 7 and 8b). Catch from vessels using gillnet gear consisted primarily of 2-year-old fish, with a mode centered around 56 cm (Figures 7 and 8c). The gillnet size distribution may be biased due to the small sample size. The U.S. north Pacific albacore fleet caught more of the larger fish (>70 cm) in the inshore areas (east of 140°W longitude) and between 40°N and 45°N latitude (Figures 8a-c). These bigger fish were also caught in large numbers in 1990.

SEA SURFACE TEMPERATURE

Sea-surface temperatures (SST's) recorded by commercial transport ships, fishing boats and research vessels were compiled into monthly means and analyzed by computer. SST contours (isotherms) were drawn by computer on charts with 1° latitude-longitude resolution. Analyses of the mean SST's (Figures 9a-f) show the distribution of isotherms and the location of surface ocean fronts. Areas where albacore catch was recorded in 1991 by the U.S. north Pacific albacore fleet are cross-hatched on the SST charts to show the relationship among areas of fishing, surface ocean fronts (close, horizontal packing of isotherms), and SST isotherm patterns.

The 1991 albacore season began in the western Pacific between 150°E and 170°E near 35°N where SST's were 1° to 2°C (1.8°-3.6°F) above normal along the northern edge of the subtropical ocean front. During June 1991 albacore fishing activity was stretched out along a fairly strong subtropical ocean frontal edge between 165°E and 160°W where SST's were from 1° to 2°C (1.8°-3.6°F) above normal. Some fishing had progressed eastward to 130°W in June where SST's were near normal and the ocean frontal edge was weak. During July fishing activity increased between 160°W and 130°W where SST's were 1° to 2°C (1.8°-3.6°F) above normal along the subtropical frontal edge which had weakened since June and moved north of 40°N. In July albacore fishing became active along the western edge of the SST frontal edge formed by coastal upwelling between Cape Blanco and Monterey Bay.

From August and into September fishing became concentrated in the offshore SST ridge where isotherms bulged northward toward Vancouver Island, and also in the coastal region from Vancouver Island to northern California where strong coastal upwelling had

formed numerous SST frontal edges. SST's were slightly above normal west of 130° W and were 1° to 3°C ($1.8^{\circ}-5.4^{\circ}$ F) below normal in upwelled water east of 130° W. During October fishing was confined primarily to the offshore area between 40°N and 45°N where SST's were 1°C below normal in the only active SST frontal edges remaining.

NMFS OBSERVED TRIPS

National Marine Fisheries Service observers accompanied four U.S. troll vessels on four trips, starting in early July and finishing in late September 1991 (see Footnote 1). The observers recorded daily catches, gillnet inflicted damage on albacore in the catch, and fish lengths and weights over a wide fishing area of the north Pacific Ocean.

A total of 12,466 albacore were examined and measured in 1991. Overall, 3.1 % (1.9 % recent damage, 1.2 % healed scars from earlier net encounters) of the catch examined showed evidence of net related damage, compared to 12.4% (7.2% recent damage, 5.2% healed scars from earlier net encounters) for observed trips in 1990. The highest incidence of injuries from recent encounters with drift nets, up to 3.7 %, occurred east of 140°W and south of 50°N where there were lower proportions of smaller fish. Statistical analysis of condition factor, RNA to DNA ratio (a measure of recent stress), and lymphocyte/red blood cell ratio found no significant difference between damaged and undamaged fish.

SUMMARY

The 1991 U.S. north Pacific albacore fishery landings (1,845 mt) represented a 35% decrease from landings in 1990, and the lowest total landings ever recorded. Overall catch rates were 36 fish/day for both the 1990 and 1991 seasons. A larger number of smaller fish in the catch resulted in a 23 % decrease in the average size of albacore caught (16.4 lbs. in 1990; 12.6 lbs. in 1991). U.S. north Pacific albacore sampling coverage increased from 57% and 56% in 1990 to 62% and 61% in 1991 for catch and effort and length-frequency respectively. Data collected during the 1991 NMFS observed trips showed that 3.1 % of the albacore caught had been damaged by previous encounters with gillnets, compared to 12.4% in 1990.

ACKNOWLEDGEMENTS

We thank the captains and crews of the U.S. north Pacific albacore fishing fleet, and William Perkins of the Western Fishboat Owners Association for their cooperation and continuing support of this program. We also thank Mary Larson of CDFG, Larry Hreha of ODFW, Brian Culver of WDF, and Russ Porter of Pacific States Marine Fisheries Commission, and members of their staffs for distributing logbooks and collecting albacore fishing information during the fishing seasons. Atilio Coan Jr., Norman Bartoo, and Gary Sakagawa received drafts of this report and provided useful comments. Henry Orr illustrated the maps, and Karen Handschuh prepared figures and typed the final draft of the manuscript.

Gear-type	Effort (days)	Catch (number)	No. of Fish Measured
		1990	
Bait Jig Bait & Jig	71 2,849 135	8,609 198,469 15,580	107 40,341 2,884
Gillnet Purse Seine Unknown	41 19 33	16 7,292 0	11 327 0
TOTAL	3,148	229,966	43,670
		1991	
Bait Jig Bait & Jig Gillnet Purse Seine Unknown	2,353 42 0* 0	185 191,831 5,439 0* 0	0 22,857 1,087 181 0 0
TOTAL	2,397	197,455	24,125

Table 1.Sampling results of the U.S. North Pacific albacore fishery by gear for 1990
and 1991.

 No catch/effort information was obtained from gillnet vessels, even though some gillnet-caught fish were measured.

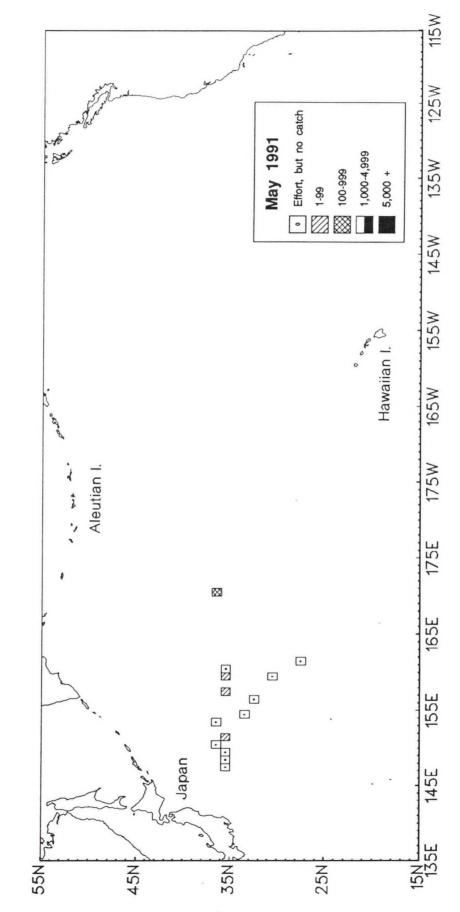
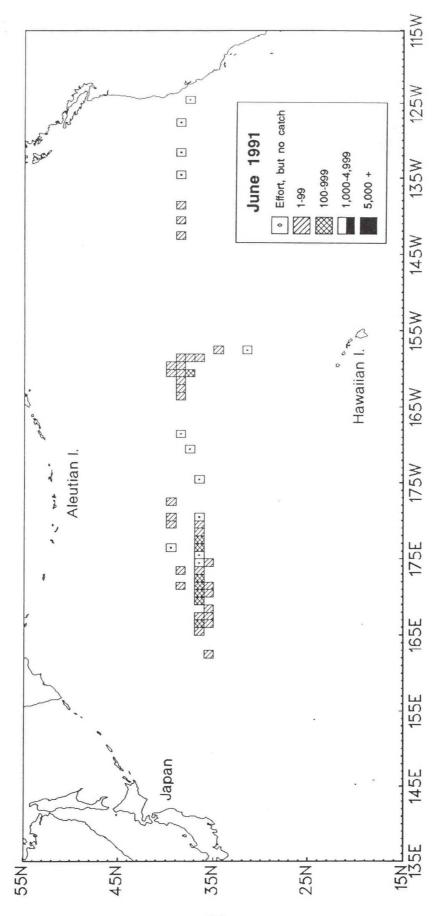
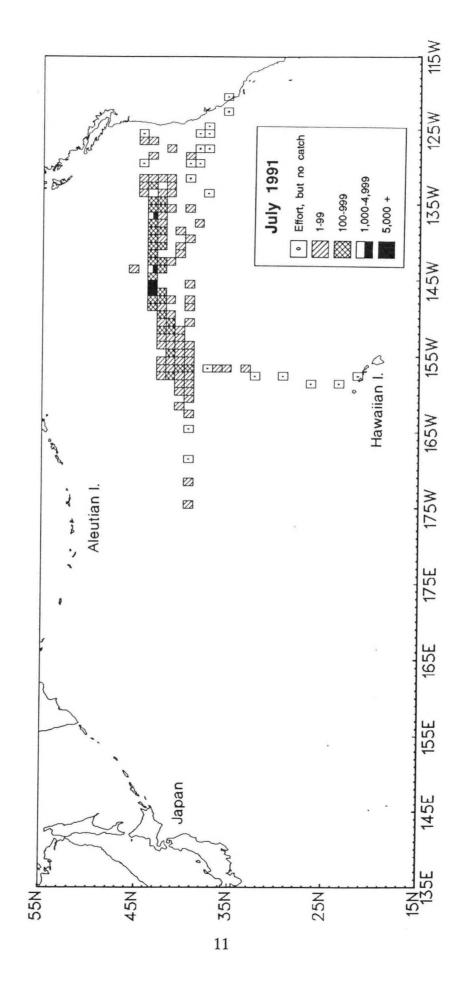

State Where Fish		Landings (mt	1	Number	of Tonding
Landed	Total	Sampled	Coverage	Total	of Landing Sampled
		199	0		
Catch-and-E	fort:				
California	723.1	575.8	80%	271	54
Oregon	942.3	483.3	51%	325	97
Washington	1,152.9	540.2	47%	163	52
TOTAL	2,818.3	1,599.3	57%	759	203
Length-Frequ	lency:				
	-				
California Oregon	723.1	497.7	69%	271	56
Washington	942.3 1,152.9	326.2 747.6	35% 65%	325 163	47 63
		/1/.0	0.5%	105	63
TOTAL	2,818.3	1,571.5	56%	759	166
		199	<u>1</u>		
Catch-and-Ef	fort:				
California	861.8	499.3	58%	357	84
Oregon	556.1	368.6	66%	105	49
Washington	427.0	279.6	65%	55	57
TOTAL	1,844.9	1,147.5	62%	517	190
Length-Frequ	ency:				
California	861.8	575.7	67%	357	76
Oregon	556.1	225.6	41%	105	26
Washington	427.0	322.5	76%	55	24
TOTAL	1,844.9	1,123.8	61%	517	126

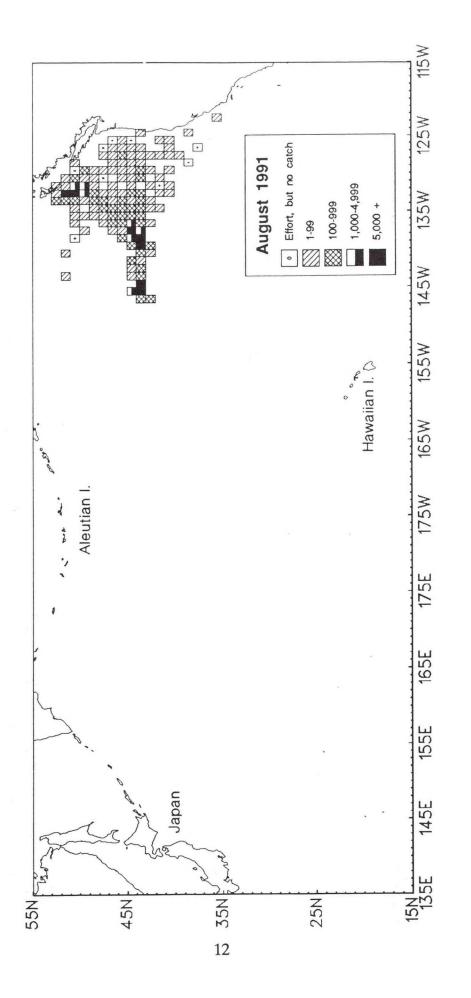
 Table 2.
 Sampling coverage for the U.S. North Pacific albacore fishery by state for 1990 and 1991

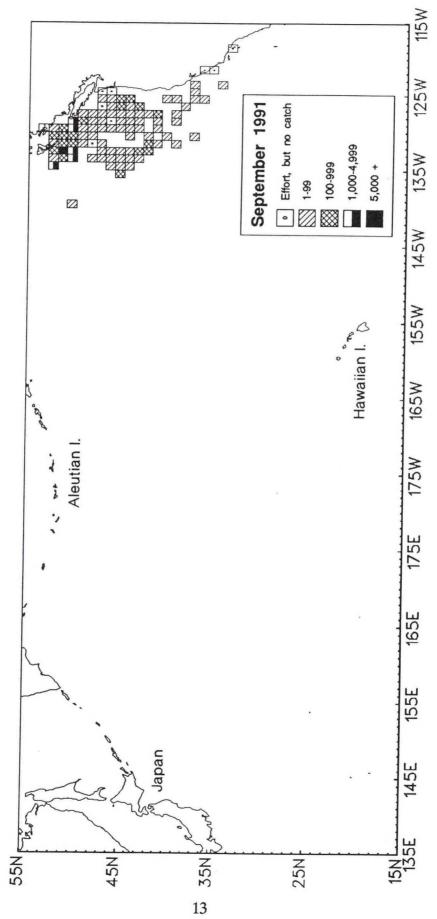

Catches of north Pacific albacore in metric tons by fisheries, 1952-1991. Table 3.

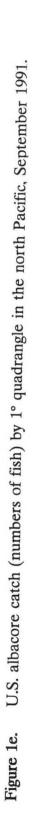
			JAPAN				TAIWAN	ANA	KOREA [*]			UNITED	STATES	~		CANADA	
YEAR	BAIT	LONG	GILL	PURSE	OTHER GEAR	TOTAL	LONG	GILL NET	LONG	BAIT	ÐIL	SPORT	GILL	PURSE	TOTAL	TROLL	GRAND TOTAL
952	41.786	26,687		154	237	68,864					23,843	1,373			25,216	11	94,151
550	32, 921	777 77		38	132	60.868					15,740	171			15,911	2	76,784
1954	28.069	20.958		23	38	49,088					12,246	147			12,393		61,48
055	720 726	16 277		¢	136	40 657					13.264	222			13,841		54,498
750	1.2 810	11. 21.1		þ	22	57 208					18.751	482			19,233	17	76,458
	10,010	- + 0 + +		10		70 707					21 145	304			21 460	00	92.26
14	49,500	5CU, 12		ŝ	101	10,101					11. 855	1.8			14, 003	74	55 71
958	22,175	18,432		80	124	40,739					CCO 41	0 0 7				100	C2 13
959	14,252	15,802			67	30,121					20,990				20, 200	212	270,10
960	25.156	17.369			76	42,601					20,100	195			1 69, 02	0	07'00
041	18 636	17 437		2	268	36.348				2,837	12,061	1,355			16,253	4	52,60
	00010	12 741		54	101	787 .10				1 085	19.760	1.681			22.526	1	47,26
706	0,129	+0/ °CI			141	101 43				C2/ C	211 30	1 161			072 80	Ľ	AR 00
963	26,420	13,464		65	218	40, 161				20412	141 07	101 1			101	• •	11 00
796	23.858	15.458		128	319	39,763	26			3,411	18, 592	824			170'77	n	1 + 1 70
045	1.1 1.01	17 701		11	121	55 324	261			417	16.545	731			17,693	15	73,29
104	14111	101 101				10 171	14			1 400	15 21.2	588			17 530	44	66.42
996	22,830	040,42		LLL	CQC	0/0'24	117			000'1	340'01						20 20
2967	30.481	28.869		89	520	59.959	305			4,113	17,826	101			040'77	101	10,00
890	14 507	140 20		796	1 100	41 934	482			4.906	20.444	951			26,301	1,028	69,74
200	140'01	104 07			001 1	144 63	1073			900 C	18 830	358			22 193	1 365	76.24
696	32,107	18,006		175	1,480	+11 ' 7C	600			2121					24 270	35/	40 07
016	24,376	15,372		317	161	40,859	1,482			4,410	1 +0 1 17	220			417'07	1 101	11 100
1271	53.198	11.035		902	367	65,502	1,739			2,071	20,537	1,175			23, /85	1,581	10'76
072	60 762	12,649	1	277	979	74.335	2.904			3,750	23,608	637			27,995	3,558	108, 79
140	10 011	14 050	20	1 353	523	R7 705	128			2.236	15.667	84			17,987	1,270	107,18
212	110, 40	20'01	100	121		270 79	27			777 4	20 187	70			25.058	1.207	114.32
416	15,510	cc0, c1	477	101	464	CIA' 10	5				10, 07	017			22 050	101	CE YB
612	52,157	10,060	166	159	254	967 , 190	407		212	C#2 C	C14'01	040			2/2 070	201	10,00
926	85,336	15,896	1,070	1,109	285	103,696	C 9C		176	5, ruu	206° CI	112			C+C' 41	272	10, 421
226	31.934	15.737	688	699	379	49,407	301		65	1,497	10,005	537			12,059	55	0,00
978	59.877	13.061	4.029	1.115	2.097	80,179	278		174	950	16,682	810			18,442	53	50'66
010	11 643	070 71	2 856	125	1 158	63, 050	106		27	303	6.801	74			7,178	521	70,85
212	1000 11		2001	200	000	1010	202		14	282	7 574	168			8 124	212	74.40
980	40, 143	14,145	2, 900	670	1, 209	00,010	40			100	107 08	101			227 24	000	71 56
981	27,426	18,020	10,348	252	904	066,96	165		000	140	12,074	110			100'01		
982	29,615	16,762	12,511	561	732	60,181	521		1,070	524	0,001	107			C+C')	104	2' 40
1983	21,098	15.103	6.852	350	125	43.528	512		1,233	607	9,512	87			10,206	522	N, cc
084	26 015	15 111	8 988	3 380	518	54.012	471		1,041	1,030	9,378	1,427		3,728	15,563	20	71,137
	10,00	002 14	100 11	1 522	101	178	100		2 160	1 408	6.431	1.176	2		9.107	56	59.6
206	41 J 17	14,020	11,604			210 02	101		C 101	C27	4 708	106			5 330	30	44.414
986	16,096	12,940	(10,1	2401	nco	040' 40							1		200 2	100	27 63
987	19,091	14,642	6,698	1,205	189	41,825		1, 100		901	2,100	5	n į		con' c		20,00
1988	6,216	13,904	9,074	1,208	177	30,579	38	11,366		865	4,212	40	0		4,009	CC1	10,04
989	8.629	12.899	7.437	2,521	1,421	32,907		4,200		54	1,860	160	4		2,078	200	59,82
000	12 500			2.315	•	14.815				115	2,603	24	29	12	2,842	305	17,96
100	1-1100									0	1.828	9	17	0	1,851		
1 2 2 1	_						_										

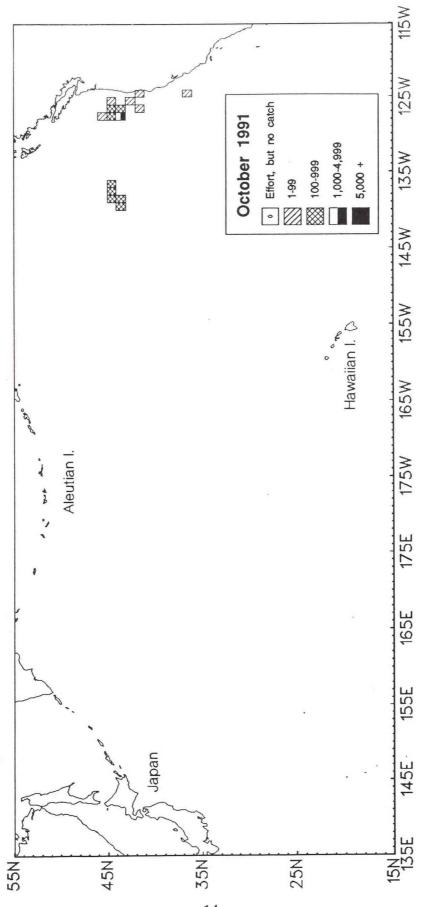
Japanese baitboat catches include fish caught by research vessels. Longline catches for 1952-60 exclude minor amounts taken by vessels under 20 tons; catches from 1958-68 were readjusted in 1988; catches are estimated by multiplying annual number of fish caught by average weight statistics. Gillnet catches for 1983-88 include south Pacific catches and are for the directed fishery.

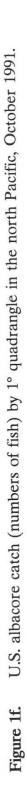


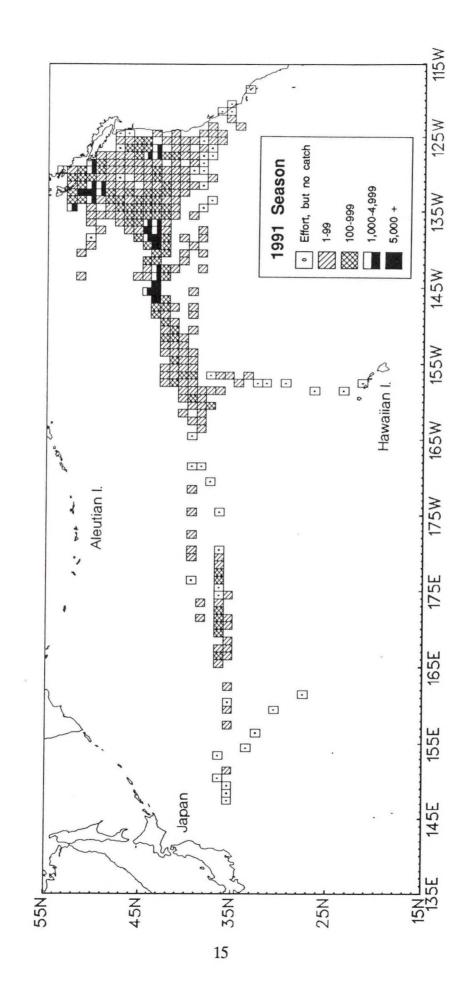












U.S. albacore catch (numbers of fish) by 1° quadrangle in the north Pacific, 1991 season. Figure 1g.

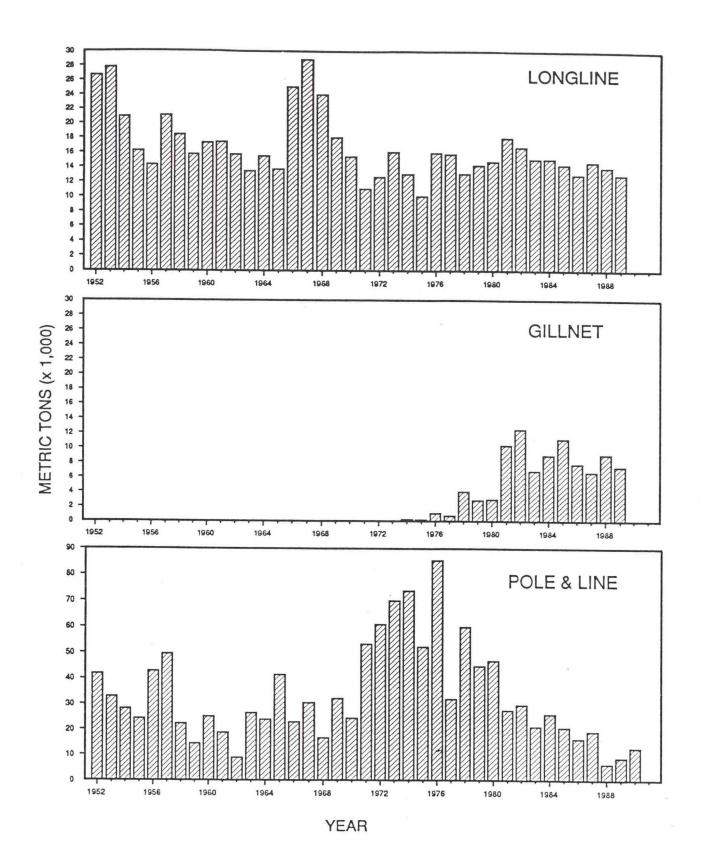
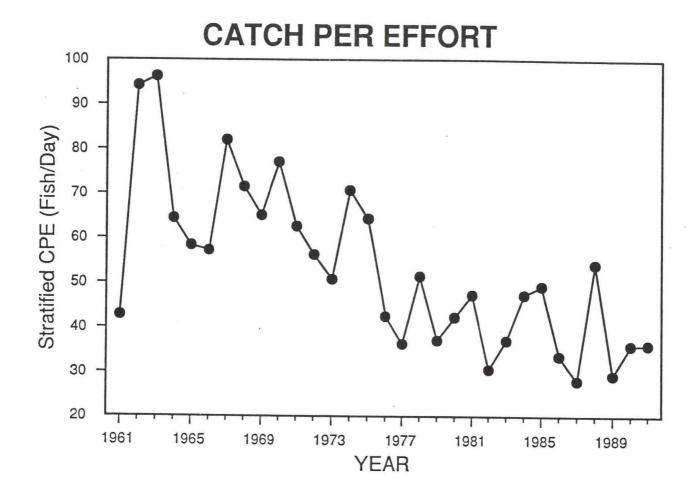
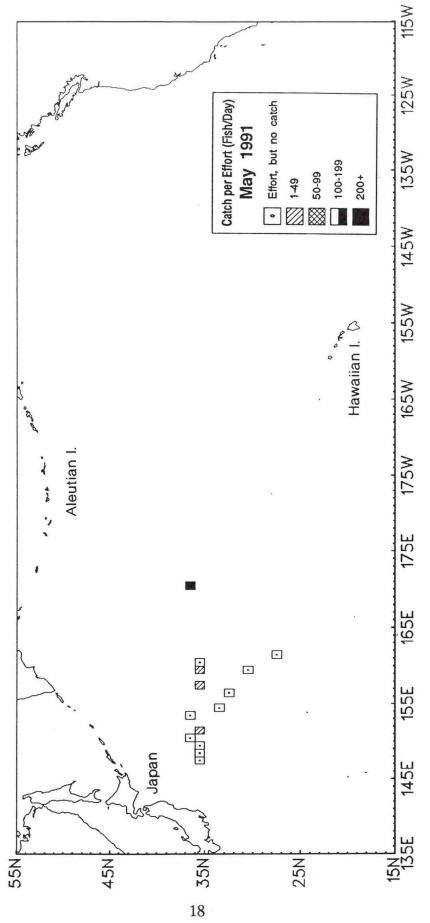
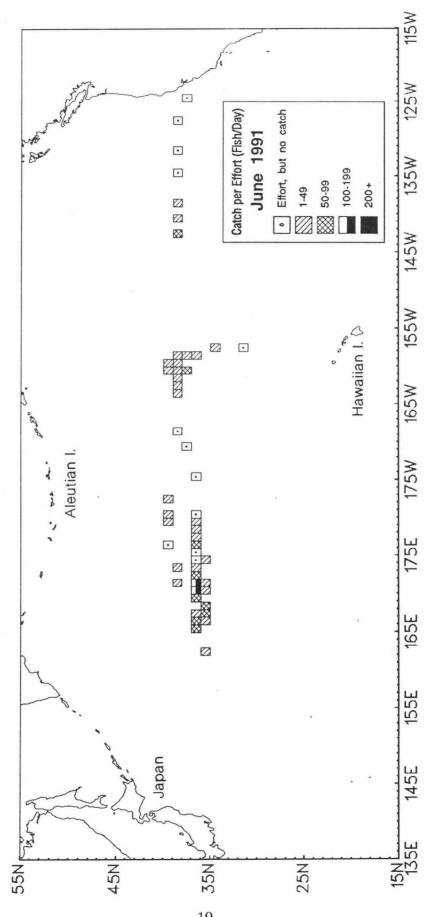
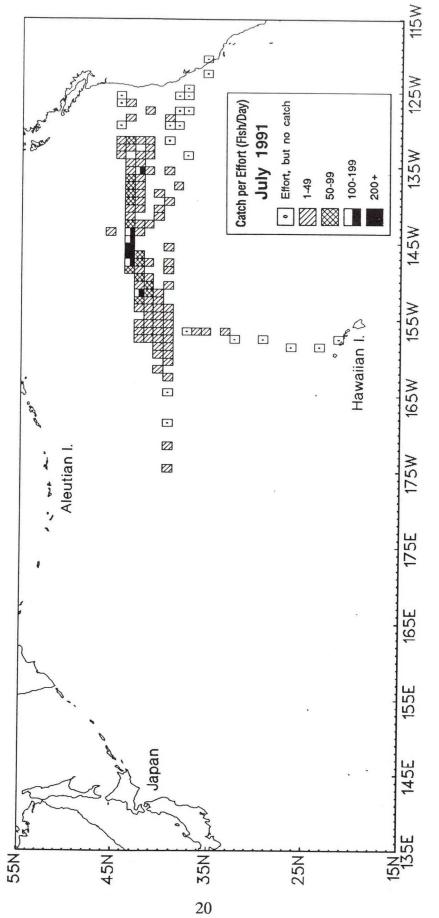
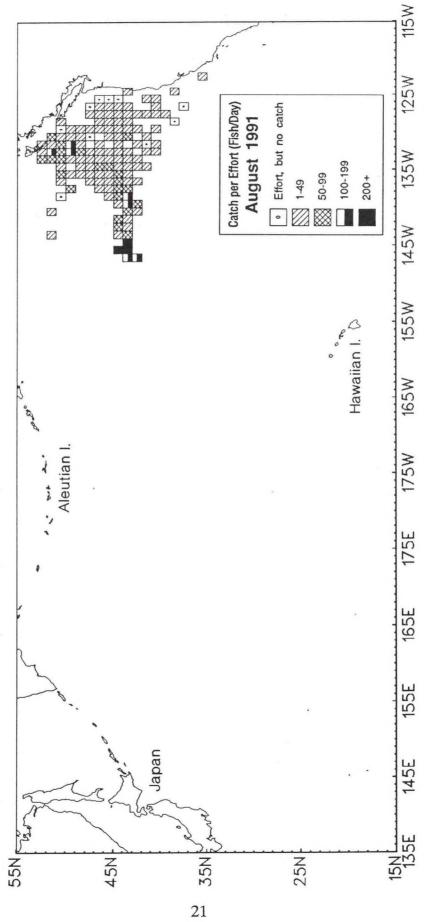


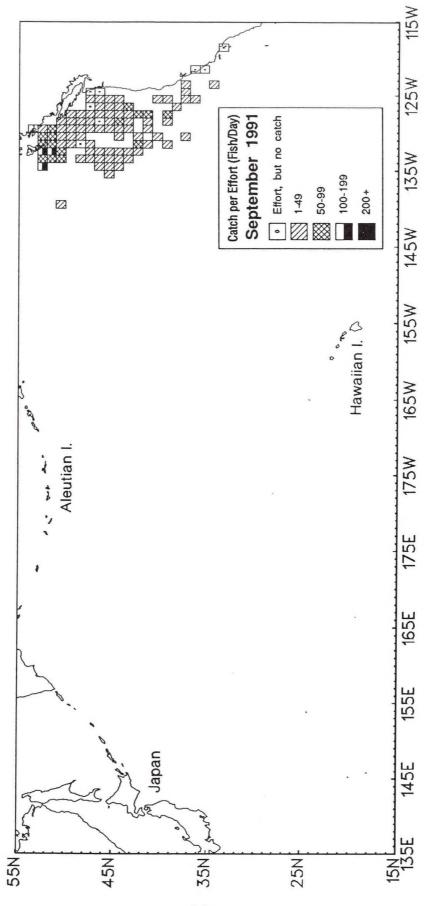
Figure 2. Japanese north Pacific albacore catch (metric tons) by selected fishery, 1952-1991.

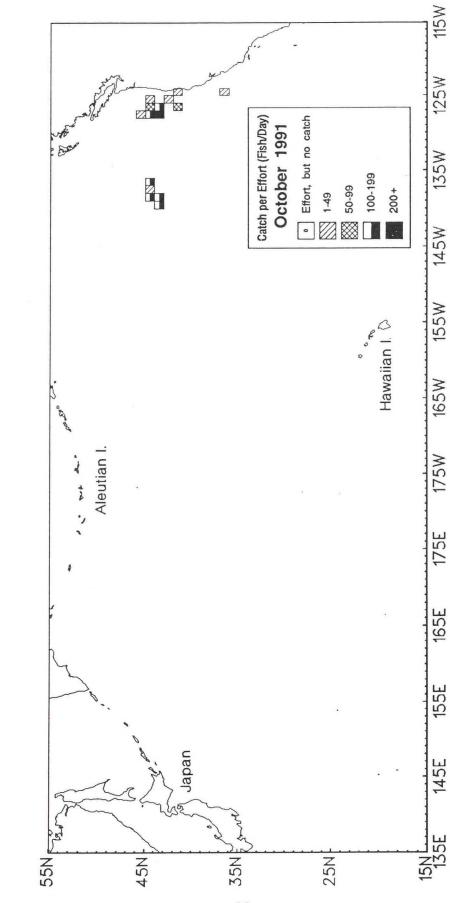




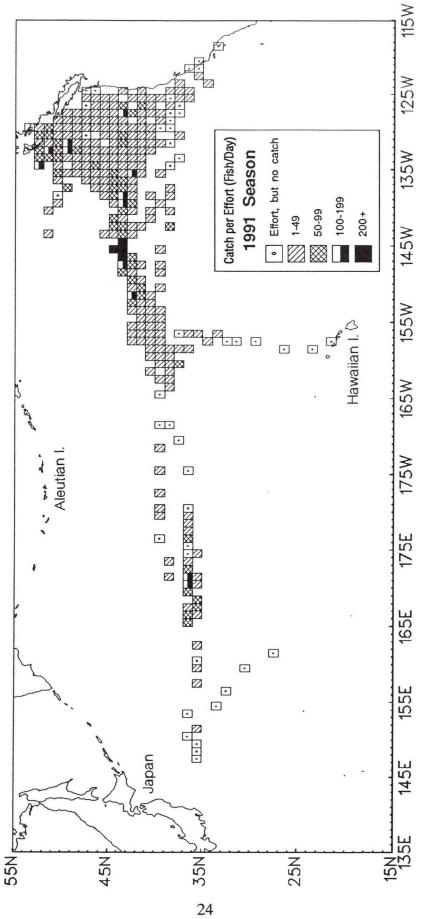

Figure 3. U.S. north Pacific albacore jigboat stratified Catch Per Effort (fish/day) by year, 1961-1991.



U.S. albacore jigboat Catch Per Effort (fish/day) by 1° quadrangle in the north Pacific, June 1991. Figure 4b.






U.S. albacore jigboat Catch Per Effort (fish/day) by 1° quadrangle in the north Pacific, August 1991. Figure 4d.

U.S. albacore jigboat Catch Per Effort (fish/day) by 1° quadrangle in the north Pacific, September 1991. Figure 4e.

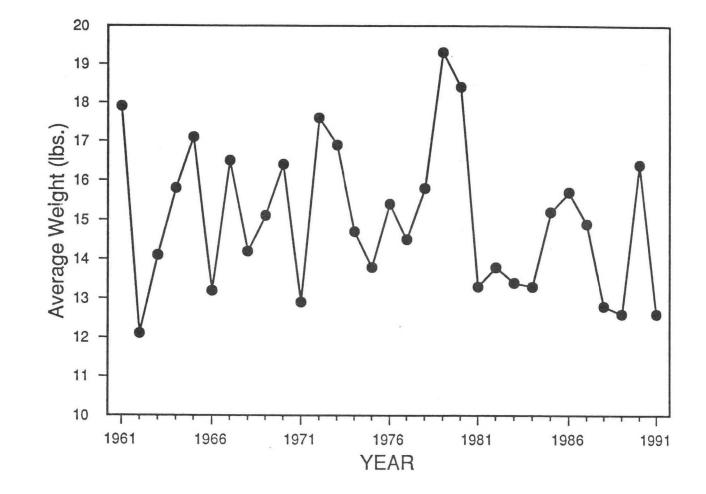


Figure 5. Average weight (lbs.) of north Pacific albacore caught by U.S. vessels by year, 1961-1991.

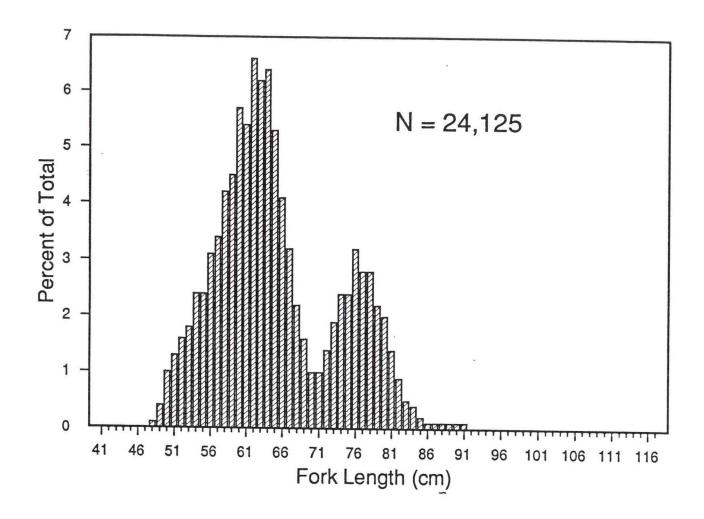
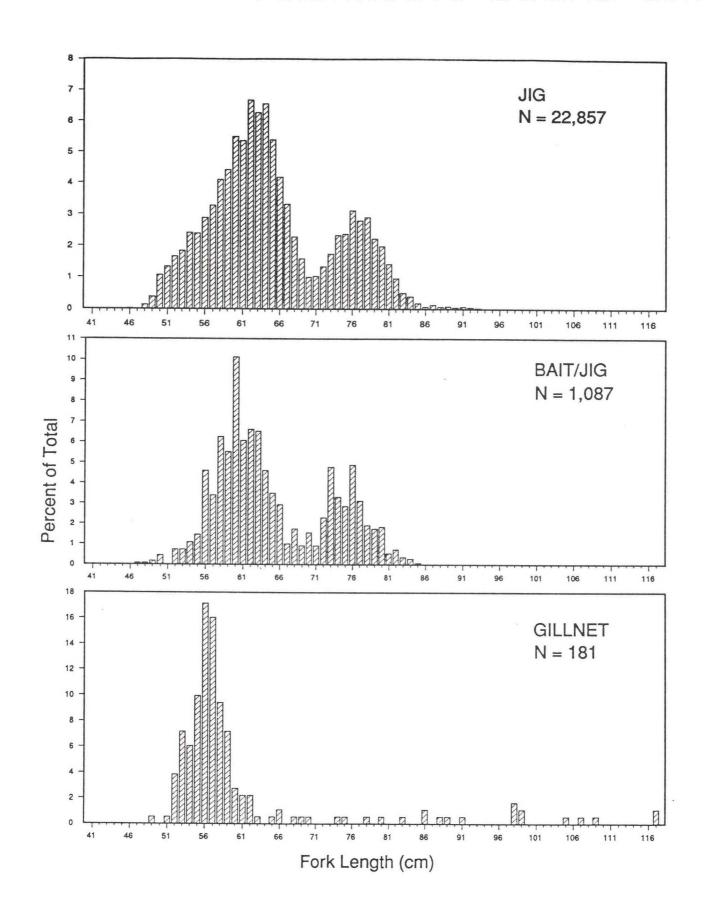
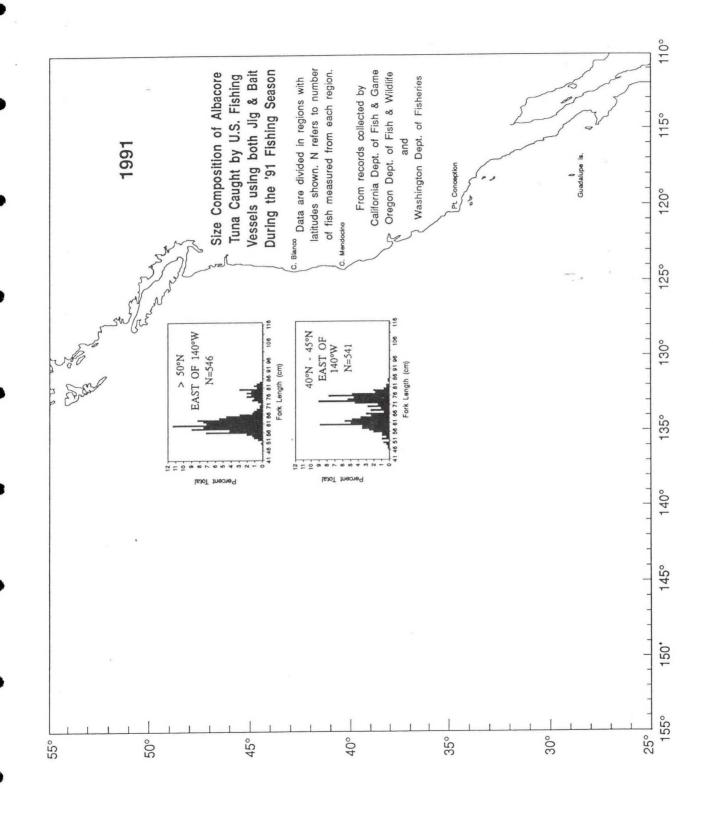
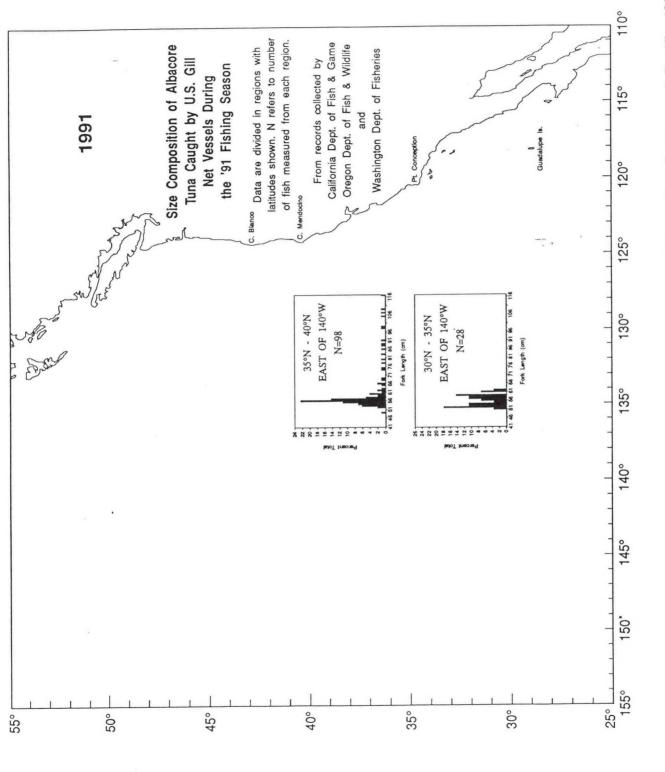
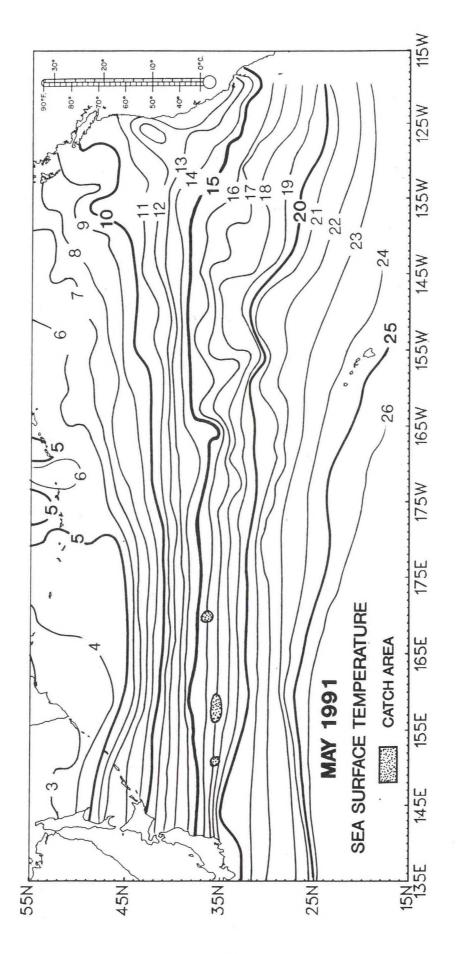


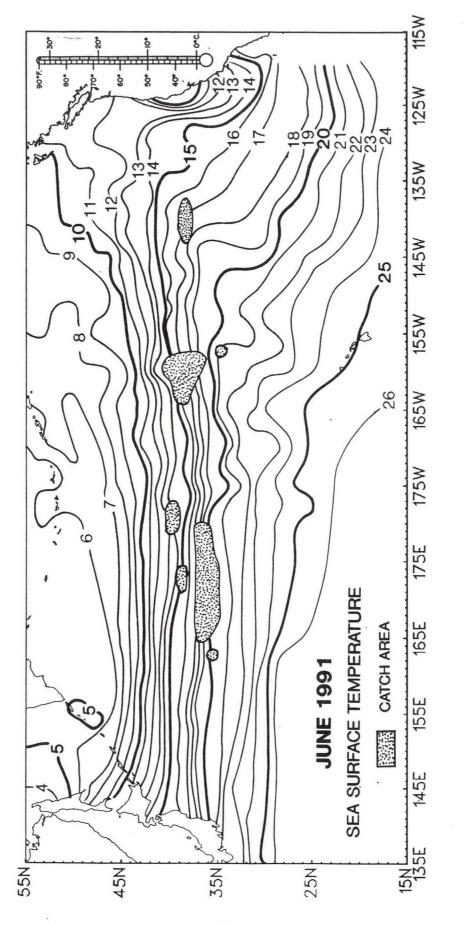
Figure 6. Length-frequency histogram of fish caught by the U.S. north Pacific albacore fleet, 1991 season.

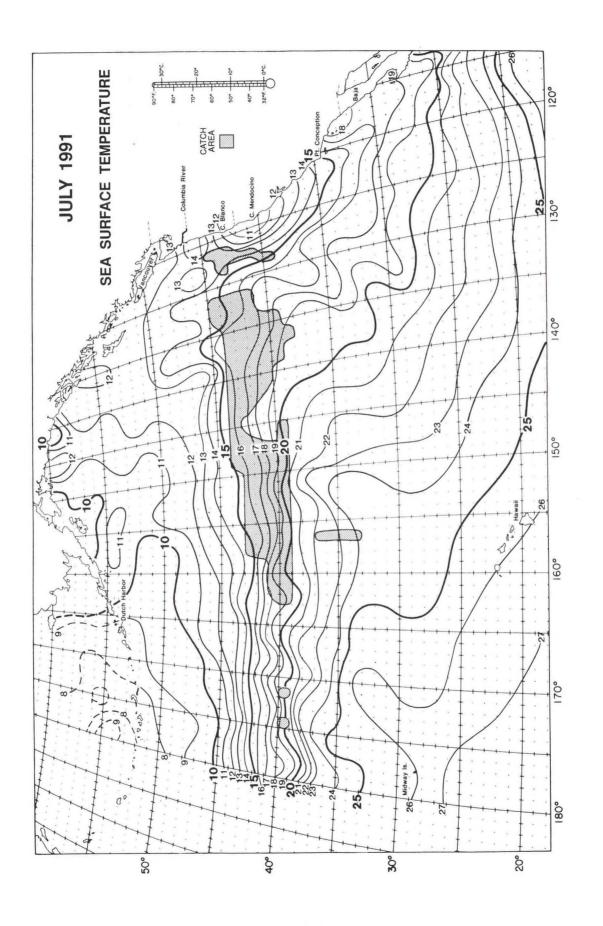


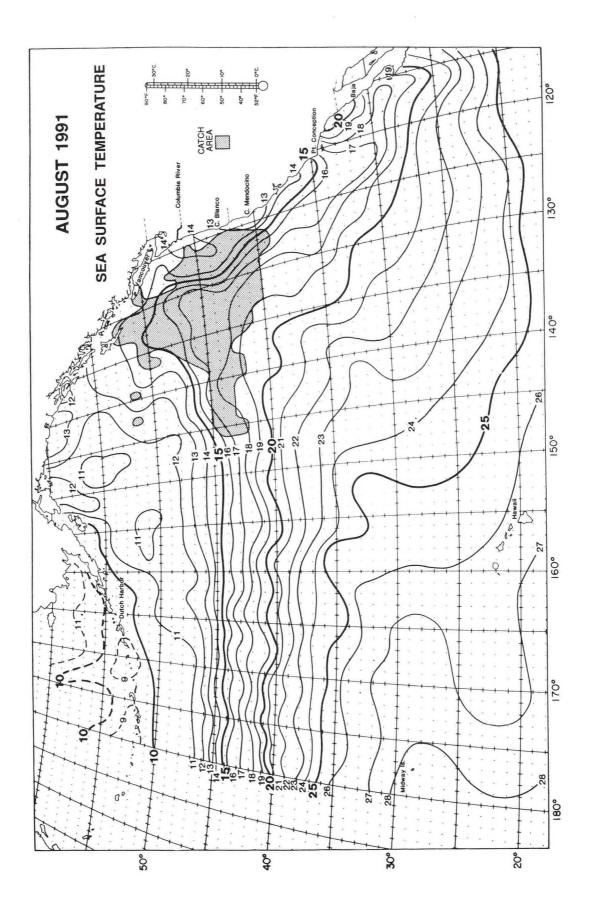


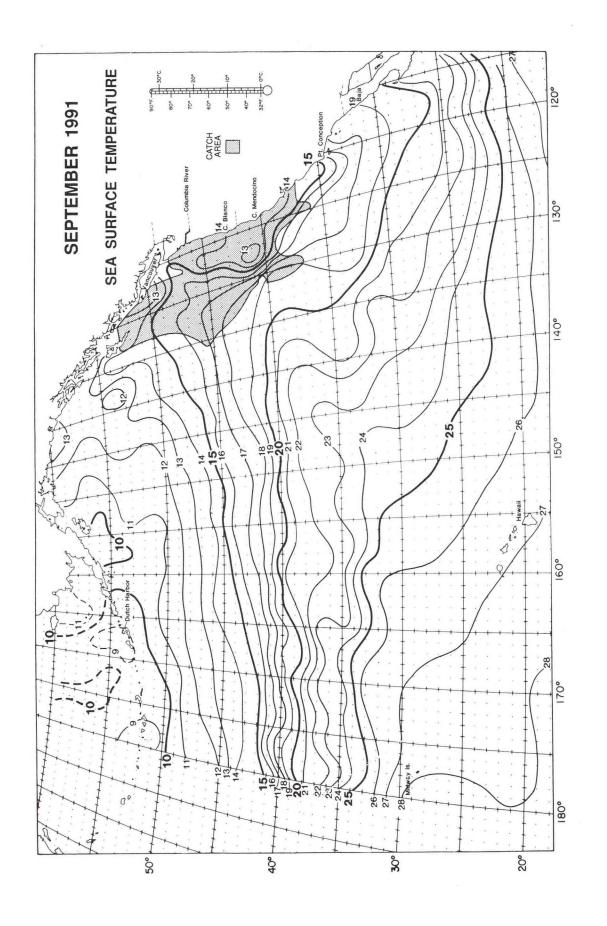

Figure 7. Length-frequency histograms of fish caught by the U.S. north Pacific albacore fleet in 1991 by gear.

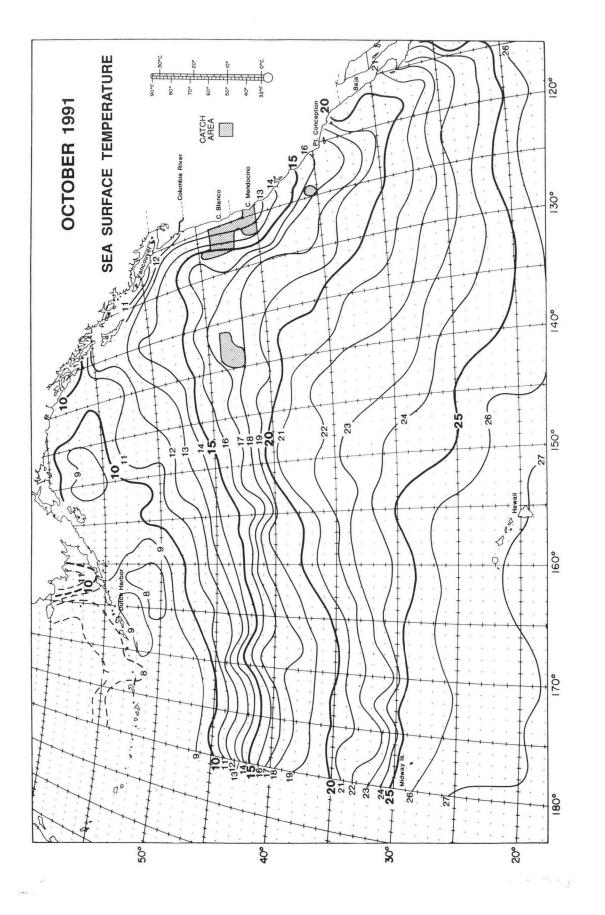



Length frequency histograms of albacore caught by U.S. vessels fishing bait and jig in the north Pacific, 1991 season. Figure 8b.


Length frequency histograms of albacore caught by U.S. vessels fishing gillnet in the north Pacific, 1991 season. Figure 8c.






Average sea-surface temperature (SST) isopleths (°C) and U.S. albacore catch area for the north Pacific, July 1991. Figure 9c.

Average sea-surface temperature (SST) isopleths (°C) and U.S. albacore catch area for the north Pacific, September 1991. Figure 9e.

